Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Org Chem ; 89(3): 1836-1845, 2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38226655

RESUMO

A regioselective visible-light-mediated denitrogenative alkene insertion of 1,2,3-benzotriazin-4(3H)-ones was developed to access 3-substituted isoindolinones, an important structural motif present in many biologically active molecules and natural products. Notably, divergent reactivity was achieved by switching from reported nickel catalysis (where C3-substituted 3,4-dihydroisoquinolin-1(2H)-ones form) to photocatalysis, where photocatalytic denitrogenation and a subsequent nitrogen-mediated hydrogen atom shift lead to exclusive 3-substituted isoindolinone formation. The developed photocatalytic reaction is compatible with activated terminal alkenes and cyclic α,ß-unsaturated esters and ketones, with wide functional group tolerance for N-substitution of the 1,2,3-benzotriazin-4(3H)-ones. The utility of this procedure is highlighted by a gram-scale synthesis and postsynthetic amidation. To understand the origin of this unique product selectivity, experimental and computational mechanistic studies were performed.

2.
Anal Chem ; 95(42): 15472-15476, 2023 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-37830912

RESUMO

An experimental platform is reported that allows for the online characterization of photochemical reactions by coupling a continuous flow photoreactor, equipped with LED light irradiation and a dual-tipped ESI source, directly to a mass spectrometer with electrospray ionization. The capabilities of this platform are demonstrated with two classes of photoreactions: (1) the photopolymerization of methyl methacrylate and (2) photocatalyzed alkyne insertion into a 1,2,3-benzotriazinone. The online technique provides rapid information to inform the underlying photochemical mechanism and evaluate the overall photochemistry.

3.
Mol Pharm ; 20(2): 1061-1071, 2023 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-36638322

RESUMO

Molecules that feature a sulfonyl fluoride (SO2F) moiety have been gaining increasing interest due to their unique reactivity and potential applications in synthetic chemistry, medicinal chemistry, and other biological uses. A particular interest is towards 18F-radiochemistry where sulfonyl fluorides can be used as a method to radiolabel biomolecules or can be used as radiofluoride relay reagents that facilitate radiolabeling of other molecules. The low metabolic stability of sulfonyl fluoride S-F bonds, however, presents an issue and limits the applicability of sulfonyl fluorides. The aim of this work was to increase understanding of what features contribute to the metabolic instability of the S-F bond in model aryl sulfonyl fluorides and identify approaches to increasing sulfonyl fluoride stability for 18F-radiochemistry and other medicinal, synthetic chemistry and biological applications. To undertake this, 14 model aryl sulfonyl fluorides compounds with varying functional groups and substitution patterns were investigated, and their stabilities were examined in various media, including phosphate-buffered saline and rat serum as a model for biological conditions. The results indicate that both electronic and steric factors affect the stability of the S-F bond, with the 2,4,6-trisubstituted model aryl sulfonyl fluorides examined displaying the highest in vitro metabolic stability.


Assuntos
Química Farmacêutica , Fluoretos , Animais , Ratos , Radioquímica/métodos , Fluoretos/química , Ácidos Sulfínicos
4.
J Org Chem ; 86(13): 9007-9022, 2021 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-34152767

RESUMO

This paper describes the facile synthesis of haloaryl compounds with long-chain alkanoyl substituents by the destannylative acylation of haloaryls bearing tri-n-butyltin (Bu3Sn) substituents. The method allows the synthesis of many important synthons for novel functional materials in a highly efficient manner. The halo-tri-n-butyltin benzenes are obtained by the lithium-halogen exchange of commercially available bis-haloarenes and the subsequent reaction with Bu3SnCl. Under typical Friedel-Crafts conditions, i.e., the presence of an acid chloride and AlCl3, the haloaryls are acylated through destannylation. The reactions proceed fast (<5 min) at low temperatures and thus are compatible with aromatic halogen substituents. Furthermore, the method is applicable to para-, meta-, and ortho-substitution and larger systems, as demonstrated for biphenyls. The generated tin byproducts were efficiently removed by trapping with silica/KF filtration, and most long-chain haloaryls were obtained chromatography-free. Molecular structures of several products were determined by X-ray single-crystal diffraction, and the crystal packing was investigated by mapping Hirshfeld surfaces onto individual molecules. A feasible reaction mechanism for the destannylative acylation reaction is proposed and supported through density functional theory (DFT) calculations. DFT results in combination with NMR-scale control experiments unambiguously demonstrate the importance of the tin substituent as a leaving group, which enables the acylation.

5.
Angew Chem Int Ed Engl ; 60(13): 7007-7012, 2021 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-33543508

RESUMO

Pd-catalyzed cross-coupling reactions of aryl diazonium salts are generally assumed to proceed via cationic PdII intermediates which in turn would be highly reactive in the subsequent transmetalation step. Contrary to this belief, we herein report our observation and rationalization of opposing reactivities of ArN2+ in Suzuki (=effective) and Stille (=ineffective) cross-couplings in MeOH. Our systematic experimental and computational studies on the roles of transmetalating agent, solvent, base and the likely involvement of in situ formed diazoether derivatives challenge the currently accepted mechanism. Our data suggest that the observed solvent dichotomy is primarily due to PdII -methoxy intermediates being formed, which are unreactive with arylstannanes, but highly reactive with arylboronic acids, complementing the Suzuki "Pd-oxy" mechanism with the direct demonstration of transmetalation of a PdII -alkoxy complex. Lewis acids were found to circumvent this reactivity divergence, promoting efficient couplings regardless of the employed conditions or coupling partners.

6.
Chem Sci ; 11(24): 6256-6267, 2020 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-32953021

RESUMO

While dual photocatalysis-transition metal catalysis strategies are extensively reported, the majority of systems feature two separate catalysts, limiting the potential for synergistic interactions between the catalytic centres. In this work we synthesised a series of tethered dual catalysts allowing us to investigate this underexplored area of dual catalysis. In particular, Ir(i) or Ir(iii) complexes were tethered to a BODIPY photocatalyst through different tethering modes. Extensive characterisation, including transient absorption spectroscopy, cyclic voltammetry and X-ray absorption spectroscopy, suggest that there are synergistic interactions between the catalysts. The tethered dual catalysts were more effective at promoting photocatalytic oxidation and Ir-catalysed dihydroalkoxylation, relative to the un-tethered species, highlighting that increases in both photocatalysis and Ir catalysis can be achieved. The potential of these catalysts was further demonstrated through novel sequential reactivity, and through switchable reactivity that is controlled by external stimuli (heat or light).

7.
Chemphyschem ; 2018 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-30289579

RESUMO

Molecular dynamics simulations of solutions of hexan-1-amine or 4-methoxybenzaldehyde in acetonitrile, an ionic liquid/acetonitrile mixture (χIL =0.2), and a number of different (neat) ionic liquids were performed, to further understand the solvent effects on the condensation reaction of these species. This work indicates that, in the presence of an ionic liquid, the amine group of hexan-1-amine is exclusively solvated by the components of the ionic liquid, and not by acetonitrile, and that the anion interacts with the aldehyde group of 4-methoxybenzaldehyde. These interactions showed little dependence on the proportion of the ionic liquid present. When varying the cation of the ionic liquid there were changes in the cation-amine interaction, and 1-butyl-2,3-dimethylimidazolium bis(trifluoromethanesulfonyl)imide ([Bm2 im][N(CF3 SO2 )2 ]) was found to order more than expected about the amine. This ordering is likely the origin of the large rate constant values determined in [Bm2 im][N(CF3 SO2 )2 ] for this condensation reaction and explains an anomaly seen previously. When changing the anion, changes were seen in the interactions between both the cation and anion with hexan-1-amine, and the anion with 4-methoxybenzaldehyde. The differing magnitude of these interactions likely causes subtle changes in the activation parameters for this condensation reaction, and provides an explanation for the anomalous rate constant values previously determined when varying the anion.

8.
Angew Chem Int Ed Engl ; 57(38): 12573-12577, 2018 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-30091504

RESUMO

Full control over multiple competing coupling sites would enable straightforward access to densely functionalized compound libraries. Historically, the site selection in Pd0 -catalyzed functionalizations of poly(pseudo)halogenated arenes has been unpredictable, being dependent on the employed catalyst, the reaction conditions, and the substrate itself. Building on our previous report of C-Br-selective functionalization in the presence of C-OTf and C-Cl bonds, we herein complete the sequence and demonstrate the first general arylations and alkylations of C-OTf bonds (in <10 min), followed by functionalization of the C-Cl site (in <25 min), at room temperature using the same air- and moisture-stable PdI dimer. This allowed the realization of the first general and triply selective sequential C-C coupling (in 2D and 3D space) of C-Br followed by C-OTf and then C-Cl bonds.

9.
Angew Chem Int Ed Engl ; 57(15): 4073-4077, 2018 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-29479784

RESUMO

While acid fluorides can readily be made from widely available or biomass-feedstock-derived carboxylic acids, their use as functional groups in metal-catalyzed cross-coupling reactions is rare. This report presents the first demonstration of Pd-catalyzed decarbonylative functionalization of acid fluorides to yield trifluoromethyl arenes (ArCF3 ). The strategy relies on a Pd/Xantphos catalytic system and the supply of fluoride for transmetalation through intramolecular redistribution to the the Pd center. This strategy eliminated the need for exogenous and detrimental fluoride additives and allows Xantphos to be used in catalytic trifluoromethylations for the first time. Our experimental and computational mechanistic data support a sequence in which transmetalation by R3 SiCF3 occurs prior to decarbonylation.

10.
Chempluschem ; 82(3): 449-457, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31962019

RESUMO

Simple Cope and Claisen rearrangements were investigated in an ionic liquid and a range of molecular solvents through a series of kinetic studies. Analysis of the solvent effects on the Cope rearrangement of 3-phenyl-1,5-hexadiene indicated that a solvophobic effect was responsible for the observed rate enhancement in the ionic liquid, and that this was due to preferential solvation of the transition state. A similar solvophobic effect contributes to the ionic liquid solvent effect on the Claisen rearrangement of allyl vinyl ether, although the ability of the ionic liquid to stabilise the incipient charges in the transition state also likely contributes to the rate increase observed in the ionic liquid solvent. The activation parameter data suggest that in this case the ionic liquid was interacting with species along the reaction coordinate through general coulombic interactions (more acetonitrile-like) rather than through hydrogen-bonding interactions (less ethanol-like).

11.
J Phys Chem B ; 120(49): 12687-12699, 2016 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-27973829

RESUMO

The rate constant for the reaction between hexan-1-amine and 4-methoxybenzaldehyde was determined in ionic liquids containing an imidazolium cation. The effect on the rate constant of increasing the length of the alkyl substituent on the cation was examined in a number of ionic liquid/acetonitrile mixtures. In general it was found that there was no significant effect of changing the alkyl substituent on the rate constant of this process, suggesting that any nanodomains in these mixtures do not have a significant effect on the outcome of this process. A series of small-angle X-ray scattering and wide-angle X-ray scattering experiments were performed on mixtures of the ionic liquid 1-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide ([Bmim][N(CF3SO2)2]) and acetonitrile; this work indicated that the main structural changes in the mixtures occur by about a 0.2 mole fraction of ionic liquid in the mixture (χIL). This region at which the main changes in the solvent structuring occurs corresponds to the region at which the main changes in the rate constant and activation parameters occur for SN2 and condensation reactions examined previously; this is the first time that such a correlation has been observed. To examine the ordering of the solvent about the nucleophile hexan-1-amine, WAXS experiments were performed on a number of [Bmim][N(CF3SO2)2]/acetonitrile/hexan-1-amine mixtures, where it was found that some of the patterns featured asymmetric peaks as well as additional peaks not observed in the [Bmim][N(CF3SO2)2]/acetonitrile mixtures; this suggests that the addition of hexan-1-amine to the mixture affects the bulk structure of the liquid. The SAXS/WAXS patterns of mixtures of 1-butyl-2,3-dimethylimidazolium bis(trifluoromethanesulfonyl)imide ([Bm2im][N(CF3SO2)2]) and acetonitrile were also determined, with the results suggesting that [Bm2im][N(CF3SO2)2] is more ordered than [Bmim][N(CF3SO2)2] due to an enhancement in the short-range interactions.

12.
Chemphyschem ; 17(23): 3853-3862, 2016 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-27689938

RESUMO

The self-diffusion coefficients of each component in mixtures of 1-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide ([Bmim][N(SO2 CF3 )2 ]) and acetonitrile were determined. The results suggest that the hydrodynamic boundary conditions change from "stick" to "slip" as the solvent composition transitions from "ionic liquid dissolved in acetonitrile" (χIL <0.4) to "acetonitrile dissolved in ionic liquid" (χIL >0.4). At higher χIL , the acetonitrile species are affected by "cage" and "jump" events, as the acetonitrile molecules reside nearer to the charged centre on the ions than in the "non-polar" regions. The self-diffusion coefficients of hexan-1-amine, dipropylamine, 1-hexanol and dipropylether in mixtures of [Bmim][N(SO2 CF3 )2 ] and acetonitrile were determined. In general, the nitrogen-containing solutes were found to diffuse slower than the oxygen-containing solutes; this indicates that there are greater ionic liquid-N interactions than ionic liquid-O interactions. This work demonstrates that the self-diffusion coefficients of species can provide valuable information about solvent-solvent and solvent-solute interactions in mixtures containing an ionic liquid.

13.
Org Biomol Chem ; 14(8): 2572-80, 2016 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-26842921

RESUMO

The reaction of bromodiphenylmethane and 3-chloropyridine, which proceeds concurrently through both unimolecular and bimolecular mechanisms, was examined in mixtures of acetonitrile and an ionic liquid. As predicted, the bimolecular rate constant (k2) gradually increased as the amount of ionic liquid in the reaction mixture increased, as a result of a minor enthalpic cost offset by a more significant entropic benefit. Addition of an ionic liquid had a substantial effect on the unimolecular rate constant (k1) of the reaction, with at least a 5-fold rate enhancement relative to acetonitrile, which was found to be due to a significant decrease in the enthalpy of activation, partially offset by the associated decrease in the entropy of activation. This is in contrast to the effects seen previously for aliphatic carbocation formation, where the entropic cost dominated reaction outcome. This change is attributed to a lessened ionic liquid-transition state interaction, as the incipient charges in the transition state were delocalized across the neighbouring π systems. By varying the mole fraction of ionic liquid in the reaction mixture the ratio between k1 and k2 could be altered, highlighting the potential to use ionic liquids to control which pathway a reaction proceeds through.

14.
Org Biomol Chem ; 13(33): 8925-36, 2015 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-26214746

RESUMO

The reaction of a series of substituted benzaldehydes with hexylamine was examined in acetonitrile and an ionic liquid. In acetonitrile, as the electron withdrawing nature of the substituent increases, the overall addition-elimination process becomes faster as does the build-up of the aminol intermediate. Under equivalent conditions in an ionic liquid, less intermediate build up is observed, and the effect on the rate on varying the substituent is different to that in acetonitrile. Extensive kinetic analysis shows that the ionic liquid solvent increases the rate constant of all steps of the reaction, resulting in faster product formation relative to acetonitrile; these effects increase with the proportion of ionic liquid in the reaction mixture. Differences in the equilibrium position of the addition step in the ionic liquid were found to account for both the decrease in intermediate build up relative to acetonitrile, as well as the differing trend in the overall rate of product formation as the substituent was changed. The microscopic origins of these ionic liquid effects were probed through temperature dependent analyses, highlighting the subtle balance of interactions between the ionic liquid and species along the reaction coordinate, particularly the importance of charge development in the transition state.

15.
Org Biomol Chem ; 13(12): 3771-80, 2015 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-25694023

RESUMO

A series of ionic liquids containing anions of differing coordination strength were investigated as solvents for the condensation reaction of an alkyl amine and an aromatic aldehyde. As predicted, the rate constant of the process was found to increase with the proportion of the ionic liquid in the reaction mixture. Temperature-dependent kinetic analyses demonstrated that by varying the ability of the anion to interact with the cation the magnitude of both the enthalpy and entropy of activation could be controlled in a predictable manner, with the activation parameters being linearly dependent on the ionic liquid basicity. Interestingly, the unexpected trend in the rate constants observed when altering the anion of the ionic liquid highlighted the presence of more subtle secondary microscopic interactions involving the anion, further emphasizing the fragility of the enthalpy - entropy balance.

16.
Org Biomol Chem ; 12(36): 7092-9, 2014 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-25092541

RESUMO

The effects of a series of ionic liquids, with systematic variations in the cation, on the condensation of an alkyl amine with an aromatic aldehyde were investigated, and the outcomes compared with those predicted based on related reactions. The addition of ionic liquids increased the observed rate constant; the mole fraction dependence of this increase was qualitatively consistent with predictions. Temperature-dependent kinetic analyses were used to demonstrate that the microscopic origins of the effects were as forecast, though the relative weighting of enthalpic and entropic contributions was dependent on the salt used.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...